Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И.Ульянова (Ленина)
(СПбГЭУ «ЛЭТИ»)

<table>
<thead>
<tr>
<th>Направление</th>
<th>12.03.01 - Приборостроение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Профиль</td>
<td>Лазерные измерительные и навигационные системы</td>
</tr>
<tr>
<td>Факультет</td>
<td>ИБС</td>
</tr>
<tr>
<td>Кафедра</td>
<td>ЛИНС</td>
</tr>
</tbody>
</table>

К защите допустить

Зав. кафедрой
Филатов Ю.В.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

БАКАЛАВРА

Тема: Моделирования алгоритмов БИНС в среде MATLAB/Simulink

<table>
<thead>
<tr>
<th>Студент</th>
<th>Пасечник Д.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>подпись</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Руководитель</th>
<th>к.т.н, доцент</th>
<th>Ткаченко А.Н.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>подпись</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Консультанты</th>
<th>Доцент</th>
<th>Трусов А.О.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>подпись</td>
<td></td>
</tr>
</tbody>
</table>

Санкт-Петербург
2016
ЗАДАНИЕ
НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ

Утверждаю
Зав. кафедрой ЛИНС
________________ Филатов Ю.В.
«___»________________2016 г.

Студент Пасечник Д.
Группа 2585
Тема работы: Моделирования алгоритмов БИНС в среде MATLAB/Simulink
Место выполнения ВКР: СПбГЭТУ «ЛЭТИ», кафедра ЛИНС

Содержание ВКР:
ВКР содержит следующие разделы: Введение; Обзор параметров и средств контроля состояния рельсового пути; Алгоритм работы БИНС с углями Эйлера-Крылова; Моделирования алгоритма работы БИНС; Требования охраны труда при работе с ПВЭМ; Заключение
Перечень отчетных материалов: текст ВКР, иллюстративный материал, таблицы, презентация.
Дополнительные разделы: БЖД – Требования охраны труда при работе с персональными электронно-вычислительными машинами.

Дата выдачи задания Дата представления ВКР к защите
«___»________________2016 г. «___»________________2016 г.

Студент Пасечник Д.
Руководитель к.т.н, доцент Ларина Е.В.
Консультант доцент Трусов А.О.
КАЛЕНДАРНЫЙ ПЛАН ВЫПОЛНЕНИЯ
ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

Утверждаю

Зав. кафедрой ЛИНС

Филатов Ю.В.

«___»___________20___ г.

Студент Пасечник Д. Группа 2585
Тема работы: Моделирования алгоритмов БИНС в среде MATLAB/Simulink

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование работ</th>
<th>Срок выполнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Обзор моделей БИНС, используемых в составе</td>
<td>20.04 – 08.05</td>
</tr>
<tr>
<td></td>
<td>путеизмерительного вагона и параметров рельсового пути</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Алгоритм работы БИНС с углами Эйлера-Крылова</td>
<td>08.05 – 15.05</td>
</tr>
<tr>
<td>3</td>
<td>Моделирование алгоритма работы БИНС</td>
<td>15.05 – 27.05</td>
</tr>
<tr>
<td>4</td>
<td>Требования охраны труда при работе с ПВЭМ</td>
<td>27.05 – 30.05</td>
</tr>
<tr>
<td>5</td>
<td>Оформление пояснительной записки</td>
<td>30.05 – 05.06</td>
</tr>
<tr>
<td>6</td>
<td>Оформление иллюстративного материала</td>
<td>02.06 – 05.06</td>
</tr>
</tbody>
</table>

Студент Пасечник Д.
Руководитель к.т.н.,доцент Ткаченко А.Н.
Консультант доцент Трусов А.О.
РЕФЕРАТ

Пояснительная записка 57 стр., 26 рис., 1 табл., 24 ист., 1 прил.

ПУТИЗМЕРИТЕЛЬНЫЙ ВАГОН, БЕСПЛАТФОРМЕННАЯ ИНОРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА, МОДЕЛИРОВАНИЯ АЛГОРИТМОВ БИНС, УГЛЫ ЭЙЛЕРА-КРЫЛОВА.

Цель работы – изучение математического аппарата на углах Эйлера-Крылова, моделирование алгоритма БИНС в среде MATLAB/Simulink и анализ полученных результатов.

В работе рассмотрена актуальность контроля рельсового пути, приведен состав контролю-вычислительного комплекса путевизимерительного вагона, приведены основные параметры геометрии рельсового пути, определяемые с привлечением информации от БИНС.

Изучены алгоритм работы БИНС с углами Эйлера-Крылова и основные кинематические соотношения. Проведено моделирование в среде MATLAB/Simulink, в результате которого получены параметры ориентации и навигации. Проведен сравнительный анализ с данными встроенного вычислителя БИНС.
The paper considers the relevance of the track controls, when the composition is led - control computer system puteizmeritelnogo car , are the basic parameters of the geometry of the track , defined - sharing with the assistance of information from SINS.

We studied the algorithm of SINS with Euler angles and Krylov wasps mainly kinematic relations. The simulation environment in MATLAB / Simulink, a result of which the parameters of the orientation and navigation A comparative analysis with the data of the built-in calculator SINS
СОДЕРЖАНИЕ

ВВЕДЕНИЕ 8

ГЛАВА 1 ОБЗОР ПАРАМЕТРОВ И СРЕДСТВ КОНТРОЛЯ СОСТОЯНИЯ РЕЛЬСОВОГО ПУТИ 9

1.1 Актуальность вопроса контроля состояния рельсового пути 9
1.2 Состав путеизмерительного вагона 10
1.3 Бесплатформенная инерциальная навигационная система 11
1.4 Основные параметры геометрии рельсового пути 18

2.1 Кинематические параметры движения объекта 23
 2.1.1 Определение абсолютной угловой скорости объекта 25
 2.1.2 Определение линейных скоростей и перемещений объекта 30

2.2 Схема алгоритма работы БИНС 34

ГЛАВА 3 МОДЕЛИРОВАНИЯ АЛГОРИТМА РАБОТЫ БИНС 36

3.1 Разработка модели в среде Matlab/Simulink 36
3.2 Результаты моделирования 40

ГЛАВА 4 ТРЕБОВАНИЯ ОХРАНЫ ТРУДА ПРИ РАБОТЕ С ПЕРСОНАЛЬНЫМИ ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНЫМИ МАШИНAMI (КОМПЬЮТЕРAMI) 45

4.1 Мероприятия по безопасности перед началом работы 47
4.2 Мероприятия по окончании работы 48
4.3 Квалификационные требования предъявляемые к пользователям, ремонтникам 48

ЗАКЛЮЧЕНИЕ 51

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 52

Приложение 1 55
ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящей пояснительной записке применяют следующие термины с соответствующими определениями:

БИНС – бесплатформенная навигационная система

ВКР – выпускная квалификационная работа

ВОГ – волоконно-оптический гироскоп

ДП – датчик перемещения

ДУС – датчик угловых скоростей

ЛГ – лазерный гироскоп

ММГ – микромеханический гироскоп

ММА – микромеханический акселерометр

ПВ – путеизмерительный вагон

ЧЭ – чувствительные элементы
ВВЕДЕНИЕ

Ключевой проблемой обеспечения безопасности на железных дорогах остается контроль состояния рельсового пути. В России, а особенно в азиатской ее части, существуют дефицит железнодорожных путей, которые вносят огромный вклад в экономическое, демографическое и культурное развитие региона. От состояния рельсового пути зависит безопасность и скорость при перевозке людей и доставке товаров. В настоящее время контроль рельсового пути проводиться с помощью путеизмерительных вагонов и ручных путеизмерительных тележек. Для определения геометрических параметров рельсовых нитей таких, как уровень, продольный уклон, кривизна, отклонения от прямолинейного положения в плане прямых участков пути, горизонтальные и вертикальные ускорения кузова, в ПВ используется информация от БИНС.

Для достижения поставленной цели ВКР нужно решить следующие задачи: провести обзор информационных сред, изучить принцип построения бесплатформенных инерциальных навигационных систем и основные математические соотношения для определения угловой ориентации объекта в углах Эйлера-Крылова, создать модель алгоритма БИНС в среде MATLAB/Simulink и провести анализ полученных результатов.
ГЛАВА 1 ОБЗОР ПАРАМЕТРОВ И СРЕДСТВ КОНТРОЛЯ СОСТОЯНИЯ РЕЛЬСОВОГО ПУТИ

1.1 Актуальность вопроса контроля состояния рельсового пути

На 2013 год общая длина железнодорожных путей составила 86 тыс. км, за год перевезено 1.41 млрд т грузов, 1.12 млрд пассажиров [1]. Работают скоростные дороги по маршрутам: Москва – Санкт-Петербург, Москва – Нижний Новгород, Санкт-Петербург – Хельсинки. В России, особенно в азиатской части, существует дефицит железных дорог, сдерживающий экономическое, демографическое и культурное развитие этих территорий. Поэтому в России строятся и будут строиться новые железные дороги. Загруженность железных дорог в нашей стране самая высокая в мире. В настоящее время в эксплуатации находится миллион грузовых вагонов. При этом, чтобы полностью обеспечивать требования по количеству грузо- и пассажироперевозок необходимо увеличивать количество курсирующих составов и скорость их движения. В свою очередь увеличение плотности и повышение скорости движения приводит к росту рисков возникновения опасных (аварийных) ситуаций.

Поэтому для поддержания необходимого уровня безопасности железнодорожного движения проводится контроль и регистрация параметров, характеризующих состояние рельсовой колеи. Контроль осуществляется прогоном тележки по заданному маршруту и его диагностикой с помощью специальной путеизмерительной аппаратурой.

В настоящее время для точной проверки геометрии рельсового пути используются путеизмерительные вагоны (ПВ) и ручные путеизмерительные тележки. Наиболее передовыми техническими средствами являются ПВ. По результатам проезда такого ПВ смотрят на состояние дороги. Если происходит превышение допустимых значений на каком-либо участки пути, то ограничивается скорость движения на данном участке или он полностью закрывается.
1.2 Состав путеизмерительного вагона

Рассмотрим основные модели путеизмерительных вагонов и историю их развития. На сегодняшний день на дорогах РФ применяются ПВ типа КВЛ-П и ЦНИИ-4. Эти путеизмерительные вагоны-лаборатории построены на основе путеизмерительных систем ЦНИИ-2, выпускаемой с 1960 г. на заводе «Транссибкабель» (г. Киев). К недостаткам ЦНИИ-2 можно отнести ограниченную скорость движения (не более 80 км/ч) и количество измеряемых параметров геометрии рельсового пути. А также уход уровня горизонта, от которого производились основные измерения в ЦНИИ-2 [3].

В тех же 90-х годах 20 века появились ПВ серии ЦНИИ-4 (производства ПИК «Прогресс»). Такой вагон-лаборатория позволяет проводить измерения около 20 параметров рельсовой колеи на скоростях до 120 км/ч [6]-[9]. И на сегодняшний день на российских дорогах курсирует примерно 9 таких ПВ.

В состав вагона-лаборатории ЦНИИ – 4 входят следующие системы [8]:

1. Бесплатформенная инерциальная навигационная система (БИНС).
2. Спутниковая навигационная система (СНС) ГЛОНАСС/GPS.
3. Оптические системы для измерения ширины колеи, бокового износа рельсов, вертикальных и горизонтальных перемещений головки рельса относительно кузова.
4. Одометр (датчик пути).
5. Система датчиков вертикальных перемещений букс относительно кузова.

1.3 Бесплатформенная инерциальная навигационная система

Для определения основных геометрических параметров рельсовых нитей в ПВ привлекается информация от БИНС. Традиционно чувствительными элементами, входящими в БИНС, являются датчики угловой скорости (ДУС) и акселерометры. Информация от ДУС используется для определения углового положения ПВ, на основе которого рассчитываются основные параметры пути. Определение параметров движения в БИНС производится по показаниям акселерометров, которые выдают информацию о линейных ускорениях объекта. В состав БИНС также может входить приемная аппаратура спутниковой навигационной системы (ПА СНС). При комплексировании данных от БИНС с сигналами СНС повышается точность определения координат местоположения подвижных объектов [14].
Рисунок 1.1 – БИНС

В качестве ДУС могут быть использованы лазерные гироскопы (ЛГ) и волоконно-оптические гироскопы (ВОГ). Примеры различных БИНС, применяемых для диагностики состояния рельсового пути, показаны на рис. 1.1. Рассмотрим некоторые из них подробнее.

Бесплатформенная инерциальная навигационная система «БИНС-Тек» построена на базе ВОГ и кварцевых акселерометров (производство фирмы «Текном»).

Внешний вид системы представлен на рис.1.2. В состав «БИНС-Тек» входит приёмник СНС Навис СН-4706, а также предусмотрена возможность для подключения одометра. Это позволяет в автономном инерциальном режиме повысить точность определения навигационных параметров.

Основные эксплуатационные и точностные характеристики системы сведены в табл. 1.1 и 1.2 соответственно.

«БИНС-Тек» может проводить измерения в диапазоне угловых скоростей – ±100 °/с, ускорений ±20g. Углы ориентации могут изменяться в следующих пределах: угол курса от 0° до 360°, угол крена от –180° до +180°, угол тангажа от –90° до +90°, а навигационные параметры: широта ±90°, долгота ±180°.
Таблица 1.1. Эксплуатационные характеристики «БИНС-Тек»

<table>
<thead>
<tr>
<th>Окружающая среда</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Рабочая температура</td>
<td>-20..+75°C</td>
</tr>
<tr>
<td>Температура хранения</td>
<td>-50..+80°C</td>
</tr>
<tr>
<td>Влажность</td>
<td>5..98%</td>
</tr>
<tr>
<td>Давление</td>
<td>450..850 мм рт. ст.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Физические воздействия</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Удар</td>
<td>20g (5 мс)</td>
</tr>
<tr>
<td>Вибрация (синусоидалльная)</td>
<td>2g</td>
</tr>
<tr>
<td>Линейные перегрузки</td>
<td>±6g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Электрические параметры</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжения питания</td>
<td>=20..27В</td>
</tr>
<tr>
<td>Потребляемая мощность</td>
<td>17Вт</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Выходные данные</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Интерфейс</td>
<td>RS232, RS422 (2 порта)</td>
</tr>
<tr>
<td>Частота обновления информации</td>
<td>100Гц</td>
</tr>
<tr>
<td>Формат данных</td>
<td>бинарный</td>
</tr>
<tr>
<td>Время автономной выставки</td>
<td>10 мин</td>
</tr>
</tbody>
</table>
Таблица 1.2. Точностные характеристики «БИНС-Тек»

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Интегрированный режим</th>
<th>Автономный инерциальный режим (с коррекцией от одометра)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Горизонтальные координаты</td>
<td>6 м</td>
<td>0.35% от пройденного пути</td>
</tr>
<tr>
<td>Путевая скорость</td>
<td>0.15 м/с</td>
<td>1 м/с</td>
</tr>
<tr>
<td>Вертикальная скорость</td>
<td>0.3 м/с</td>
<td>0.5 м/с</td>
</tr>
<tr>
<td>Углы ориентации(крен, тангаж)</td>
<td>0.07°</td>
<td>1°</td>
</tr>
<tr>
<td>Курс</td>
<td>0.2°</td>
<td>1° (за 1)час</td>
</tr>
<tr>
<td>Высота</td>
<td>3 м</td>
<td>4 м</td>
</tr>
</tbody>
</table>

Другая система, которая используется в ПВ, – это БИНС-2М фирмы «Электрооптика». В качестве ЧЭ в ней используется три лазерных гироскопов типа ГЛ-2Д, собранных в общем корпусе, и три кварцевых маятниковых акселерометров ВА-3. Выпускается три варианта БИНС-2М, которые отличаются точностными характеристиками. В таблице 1.3 приведены характеристики ЧЭ для модели БИНС-2М-03. Внешний вид системы БИНС-2М-03 представлен на рис. 1.3.
Таблица 1.3. Точностные характеристики БИНС-2М

<table>
<thead>
<tr>
<th>Мерники</th>
<th>Точность нуля</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лазерные гироскопы</td>
<td>0,1°/ч</td>
</tr>
<tr>
<td>Случайный дрейф</td>
<td>0,007°/\sqrt{ч}</td>
</tr>
<tr>
<td>Стабильность масштабного коэффициента</td>
<td>10*10^-4</td>
</tr>
</tbody>
</table>

Акселерометры

<table>
<thead>
<tr>
<th>Мерники</th>
<th>Точность нуля</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стабильность нуля</td>
<td>550мкг</td>
</tr>
<tr>
<td>Стабильность масштабного коэффициента</td>
<td>600 ppm</td>
</tr>
</tbody>
</table>

Диапазон измерений БИНС-2М лежит в пределах для:

- угловых скоростей – ±300 °/с,
- ускорений – ±20g,
- широты – ±90°,
- долготы – ±180°.

Выходными параметрами такой БИНС являются:

- координаты (широта, долгота, высота),
- линейные скорости (северная, восточная, вертикальная),
- угловые параметры – истинный курс, гироскопический курс (рысканье), крен, тангаж,
- угловые скорости и ускорения в связанной системе координат.
К основным режимам работы БИНС-2М относятся начальная выставка, автономный инерциальный режим, интегрированный режим (совместная обработка сигналов от БИНС, СНС и других источников информации о движении объекта).

Рисунок 1.3 – Внешний вид «БИНС-2М»

Лазерные гироскопы выпускаются различными российскими производителями, в том числе АО «Научно-исследовательский институт «Полюс» им. М.Ф. Стельмаха». Они серийно выпускают лазерные гироскопы модели КМ-11. На основе этой модели ЛГ и трех акселерометров АК-10 изготовлена инерциальная измерительная система, которая успешно может применяться не только в авиации, при мореходных испытаниях, но и для задач диагностики рельсового пути.

Если для задачи диагностики состояния рельсовой колеи требуется только определение угловой ориентации относительно плоскости горизонта, то в этом случае возможно использовании аналитической гировертикали усеченного состава, то есть построенной на одном ЛГ и трех акселерометрах [12]. Такие системы можно использовать для оперативной проверки состояния железнодорожного пути. Для этого их можно устанавливать на ручных измерительных тележках или дрезинах.
Перспективным направлением является применение БИНС на микромеханических чувствительных элементах. Технология изготовления микромеханических гироскопов (ММГ) и микромеханических акселерометров (ММА) с каждым годом растет. Достоинствами ММГ и ММА является недорогая цена и возможность создания на их основе малогабаритных БИНС. Но такие приборы имеют меньшие точностные характеристики по сравнению с системами на ВОГ и ЛГ.

Рассмотрим места расположения БИНС на ПВ. На рис. 1.4 приведены возможные схемы установки БИНС. Система может быть закреплена на

• ходовой тележке (рисунок 1.4, а);

• специальной плате, закрепляемой под тележкой (рисунок 1.4, б);

• кузове (рисунок 1.4, в).

При закреплении БИНС на кузове вагона (см. рис. 1.8, в) будет измеряться траектория движения вагона (его базы), а не требуемые параметры – положение пути в профиле и плане.

Как отмечено в работе [26] «с точки зрения эффективного использования БИНС в задаче диагностики геометрических параметров рельсового пути на скоростях 160 км/ч, в том числе с точки зрения оптимальности конструкторских решений, наиболее удачным является вариант a», то есть расположение на ходовой тележке (рис. 1.4, а). К недостаткам такого варианта расположения БИНС можно отнести влияние колебаний рамы тележки на показания ЧЭ БИНС. Вариант b в этом плане более удачный, так как из-за дополнительной подвески будут более низкочастотные колебания платформы. Однако к недостаткам варианта b можно отнести «сложность обеспечения необходимой жесткости дополнительной плите», на которой может быть установлена не только БИНС, но и другие датчики.

17
1.4 Основные параметры геометрии рельсового пути

Согласно [9] можно разделить параметры, которые определяются вычислительным комплексом ЦНИИ-4, на те, что вычисляются в процессе проезда (например, уровень, рихтовка, перекосы, уклон продольного профиля, кривизна, ширина рельсовой колеи, ускорения кузова), и те, что вычисляются после проезда (например, неровности на поверхности катания рельсов, отклонение от прямолинейного положения в плане прямых участков пути, неровности продольного профиля и пр.). Другая классификация параметров – это разделение их по положению в плане, профиле и по уровню.

Как отмечалось в п. 1.1, при обнаружении аварийно-опасных участков железнодорожной дороги происходит закрытие движения или ограничение скорости на нем. Параметрами рельсовой колеи, по которым принимаются такие решения, являются «ширина колеи, взаимное положение рельсовых нитей по уровню, просадки рельсовых нитей, положение пути в плане (рихтовка)» [9].

Информацию от БИНС можно привлекать для определения таких основных характеристик колеи как:

1. Уровень;
2. Продольный уклон;
3. Кривизна рельсовой колеи;
4. Отклонения от прямолинейного положения в плане прямых участков пути.
Прежде, чем перейти к описанию перечисленных параметров, рассмотрим построение железнодорожного пути. Любой план пути представляет собой смещение прямолинейных и кривых отрезков. Устройство пути в кривых, помимо применения укороченных рельсов на внутренней нити, уширения колеи при малых радиусах и пр., главным образом отличается тем, что происходит возвышение одного рельса над другим и появляются переходные кривые (ПК) [25]. ПК нужны для плавного постепенного перехода от прямых участков пути к круговому. План и профиль ПК показан на рис. 1.5. ПК имеет радиус ρ переменной величины. Сначала он бесконечно большой, чтобы можно было совместить прямолинейный участок с ПК, затем он становится равен радиусу R круговой кривой. Так как изменяется радиус ПК, то соответственно изменяется и кривизна пути. Для описания ПК могут быть использованы различные функции (зависимости), чаще всего применяются радиальные спирали (клотоида) и кубические параболы.

Рисунок 1.5 – План и профиль переходной кривой:
НПК – начало ПК, КПК – конец ПК.

Для того, чтобы нагрузка на рельсы резко не изменялась, то есть сохраняла свое значение в допустимых пределах изменения (при этом учитывается влияние центробежных сил), вводится возвышение наружного
рельса (величина \(h \) на рис.1.5). Величина возвышения зависит от максимальной скорости движения на участке, от вида поезда (грузовой, пассажирский), что определяет массу нагрузки на рельсы, и радиуса кривой. На железных дорогах России максимальное возвышение наружного рельса в кривых составляет 150 мм [8].

Перейдем к геометрическим параметрам рельсового пути.

Уровень или взаимное положение рельсов равен по уровню определяется при совместной обработке показаний БИНС и двух датчиков перемещений (ДП). Рассмотрим случай расположения БИНС в кузове вагона. Тогда по показаниям одно из гироскопов, входящих в БИНС, можно определять угол крена \(\theta_k \). Угол крена будет содержать информацию как о угле наклона измерительной цилиндрической колесной пары относительно кузова вагона в поперечной плоскости крена \(\theta_p \) (который необходим для определения уровня), так и о угле наклона кузова относительно оси колесной пары \(\theta_{отн} \) (рис. 1.6) [27]. Таким образом можно записать, что

\[
\theta_k = \theta_p + \theta_{отн} \tag{1.1}
\]

Угол \(\theta_{отн} \) вычисляется по данным ДП как

\[
\theta_{отн} = \frac{l_1 - l_2}{l}, \tag{1.2}
\]

где \(l_1 \) и \(l_2 \) – расстояния от кузова вагона до букс (см. рис. 1.5), \(l \) – расстояние между точками опоры колес на рельсы (шаблон).
Рисунок 1.6 – Схема определения уклона

Тогда, зная угол \(\theta_p \) и используя выражения (1.1) и (1.2), уровень будет определяться по следующему выражению

\[
\Delta H = \theta_p l = l\left(\theta_k - \frac{l_1 - l_2}{l}\right) = l\left(\theta_k - \frac{l_1 - l_2}{l}\right) = l\theta_k - (l_1 - l_2). \tag{1.3}
\]

Продольный уклон или уклон продольного профиля. Определяется также по показаниям БИНС и ДП. При наклоне кузова относительно продольной оси (по отношению к горизонту) БИНС будет измерять угол тангажа \(\psi_k \). По данным от ДП можно определять угол между продольной осью кузова вагона и пути \(\psi_{отн} \). Тогда уклон находится согласно выражению

\[
\psi_p = \psi_k + \psi_{отн} = \psi_k + \frac{l_5 - l_1}{l_k}, \tag{1.4}
\]

где \(l_5 \) и \(l_1 \) – измеренное перемещение кузова относительно букс 1-го и 5-го колес по показаниям ДП, \(l_k \) – база тележки [].

Кривизна пути в плане определяется совместно по показаниям БИНС и одометра (датчика пройденного пути). Из курса теоретической механики при движении по траектории кривизна кривой будет определяться как
отношение угла смежности к приращению дуговой координаты. Применительно к железнодорожному пути и измерительным приборам, получим, что кривизна пути определяется как

$$k = \frac{\Delta K \pi}{\Delta L \times 180} \quad (1.5)$$

где k — кривизна пути в плане, ΔL — пройденный путь по одометру, ΔK — приращение курса при прохождении определенного отрезка пути, которое вычисляется по данным БИНС.

Отклонения от прямолинейного положения в плане прямых участков пути — это «отклонения положения осевой линии пути от геодезической прямой, соединяющей точки начала двух соседних кривых» [8].

Выводы по 1 главе

В данной главе рассматривается актуальность вопроса своевременного контроля состояния железных дорог. Современным комплексом для измерения геометрических параметров рельсового пути является ПВ. В работе дан краткий обзор выпускаемых отечественных ПВ. Одной из основных систем, входящих в структуру ПВ, является БИНС, по измерительной информации которой определяются такие характеристики пути как: взаимное положение рельсовых нитей, уклон, кривизна пути, отклонения от прямолинейного положения в плане прямых участков пути. Проведен обзор моделей БИНС, устанавливаемых на ПВ. Описаны способы определения основных геометрических параметров рельсового пути с привлечением данных от БИНС.
ГЛАВА 2. АЛГОРИТМ РАБОТЫ БИНС С УГЛАМИ ЭЙЛЕРА-КРЫЛОВА

2.1 Кинематические параметры движения объекта

Рассмотрим принцип построения бесплатформенных инерциальных навигационных систем. БИНС может работать в нескольких режимах. Подробнее остановимся на автономном инерциальном режиме, в котором не привлекается информация от других датчиков (например, одометра и СНС) и не проводится совместная обработка данных различных измерителей. В этом режиме в виду нестабильности вертикального канала рассматривается только горизонтальный канал БИНС. В состав БИНС входит блок гироскопов и блок акселерометров, при обработке показаний которых выдаётся информация о параметрах навигации и ориентации. То есть алгоритм БИНС можно разделить на две части: навигационный алгоритм – получение составляющих линейной скорости и координат объекта (для автономного режима – это восточная и северная составляющая линейной скорости, широта и долгота), и алгоритм ориентации – выдача данных об угловом положении объекта. В качестве параметров ориентации могут выступать углы Эйлера-Крылова, направляющие косинусы, параметры Родрига-Гамильтона и др. Каждые из перечисленных параметров имеют свои достоинства и недостатки и их выбор зависит от конкретной решаемой задачи, от требований к быстроте и погрешностям вычислений.

В данной главе будет рассмотрен алгоритм ориентации, построенный на углах Эйлера-Крылова, к достоинствам которых в первую очередь можно отнести наглядность и понятность, а к недостаткам – невозможность решения уравнений при определенных угловых положениях объекта, что накладывает ограничения на величины углов.

Для определения положения объекта на поверхности Земли вводятся две системы координат (СК): базовая и приборная (связанная с подвижным
объектом). В качестве базовой СК можно использовать различные системы (геоцентрическая, географическая, ортодромическая и пр.), но чаще используют географическую топоцентрическую СК (ГСК) или географический сопровождающий трехгранник \(OX_gY_gZ_g \), так как ГСК является подвижной СК и перемещается вместе с объектом. Точка \(O \) – начало координат – связано с центром масс объекта. Ось \(OX_g \) направлена на север по касательной к меридиану, \(OZ_g \) – на восток по касательной к параллели, \(OY_g \) – вверх вдоль вертикали места (рис. 2.1). В ГСК положение объекта задается широтой \(\varphi \), долготой \(\lambda \) и высотой над уровнем моря \(h \). Обозначим связанную систему координат (СКС) как \(OXYZ \).

![Diagram](image)

Рисунок 2.1 – ГСК и определение широты, долготы и высоты объекта

Движение центра масс \(O \) по поверхности Земли представляет собой сложное движение точки. В этом случае абсолютное движение точки складывается из переносного и относительного движений. Относительное движение – перемещение точки (объекта) по поверхности Земли, при этом считается, что Земля неподвижна. Переносное движение – движение точки вместе с Землей.
Гирокопы, входящие в БИНС, измеряют проекции абсолютной угловой скорости на их измерительные оси. Будем считать, что измерительные оси полностью совпадают с осями объекта OXYZ. Абсолютная угловая скорость объекта складывается из угловой скорости географического трехгранника и угловой скорости вращения объекта относительно ГСК.

2.1.1 Определение абсолютной угловой скорости объекта

Абсолютная угловая скорость трехгранника OXgYgZg представляет собой сумму переносной угловой скорости, обусловленной вращением Земли вокруг своей оси, и угловой скорости за счет движения объекта вдоль земной поверхности.

Проекции абсолютной угловой скорости географического трехгранника на его оси равны [19]

\[
\begin{align*}
\omega_x &= (U + \lambda') \cos \varphi = U \cos \varphi + \frac{V_{Zg}}{R}, \\
\omega_y &= (U + \lambda') \sin \varphi = U \sin \varphi + \frac{V_{Zg}}{R} \tan \varphi, \\
\omega_z &= -\varphi' = -\frac{V_{Xg}}{R},
\end{align*}
\]

где \(\varphi, \lambda\) — широта и долгота объекта, \(U\) — угловая скорость вращения Земли, \(V_{Xg}, V_{Zg}\) — северная и восточная составляющие линейной скорости, \(R = \sqrt{\frac{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}}\) — радиус Земли, \(a\) и \(b\) — полуоси эллипсоида Красовского Ф. Н., \(\lambda' = \frac{V_{Zg}}{R \cos \varphi}\) и \(\varphi' = \frac{V_{Xg}}{R}\).

Угловое положение объекта относительно ГСК задается углами Эйлера — угол рысканья, тангажа и крена. Угол рыскания \(\psi\) — угол, отсчитываемый в горизонтальной плоскости \(OXgZg\) от оси \(OXg\) (рис. 2.1). Угол тангажа \(\theta\) отсчитывает в вертикальной плоскости (рис. 2.2). Угол крена \(\gamma\) отсчитывает в поперечной плоскости (рис. 2.3). Взаимное расположение ГСК и связанной системы координат показано на рис. 2.4. Определим матрицы направляющих
косинусов при, переходе от географической системы координат $OX_sY_sZ_s$ к связанной $OXYZ$ [19].

![Diagram](image)

Рисунок 2.1 – Поворот на угол рысканья

При повороте на угол рысканья можно составить следующую матрицу разворота

$$A_\psi = \begin{bmatrix} \cos \psi & 0 & -\sin \psi \\ 0 & 1 & 0 \\ \sin \psi & 0 & \cos \psi \end{bmatrix} \quad (2.2)$$

Второй поворот на угол θ проводится относительно промежуточной оси OZ' против хода стрелки часов. Матрица поворота на угол тангажа будет иметь следующий вид:

$$A_\theta = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Последний поворот на угол крена γ вокруг оси OX'' переводит трехгранник $OX_gY_gZ_g$ в конечное положение $OXYZ$. Матрица поворота в этом случае будет

$$
A_Y = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \gamma & \sin \gamma \\
0 & -\sin \gamma & \cos \gamma
\end{bmatrix}
$$

(2.3)

Полный разворот от ГСК к ССК будет иметь вид:

$$
[XYZ] = A_\gamma [X''Y''Z''] = A_\gamma A_\theta [X'Y'Z'] = A_\gamma A_\theta A_\psi [XgYgZg]
$$

(2.4)

или в матричном виде

$$
A = A_\gamma A_\theta A_\psi
$$

(2.4)
Рис.2.3 – Поворот на угол крена

где матрица A является искомой матрицей преобразований от трёхгранника $O_{X_g}Y_gZ_g$ к $OXYZ$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},$$

(2.6)

где, $a_{12} = \sin \theta$, $a_{13} = -\cos \theta \sin \psi$, $a_{21} = -\cos \psi \cos \theta + \sin \psi \sin \theta$, $a_{22} = \cos \psi \cos \theta$, $a_{23} = \cos \psi \sin \theta + \sin \psi \cos \theta$, $a_{31} = \sin \psi \cos \theta + \cos \psi \sin \theta$, $a_{32} = -\sin \psi$, $a_{33} = -\sin \psi \sin \theta + \cos \psi \cos \psi$.

28
Рис.2.4- Взаимное положение связанной и географической систем координат

При переходе из связанной системы координат в ГСК рассматривается обратная матрица перехода C

$$C = A^T$$

или

$$[X_g Y_g Z_g] = C[XYZ]$$

Проекции вектора абсолютной угловой скорости связанного трехгранника на свои оси примет вид в соответствии с последовательностью поворотов (2.6)

$$\begin{vmatrix}
\omega_X \\
\omega_Y \\
\omega_Z
\end{vmatrix} = A_Y A_\theta A_\psi
\begin{vmatrix}
\omega_{Xg} \\
\omega_{Yg} \\
\omega_{Zg}
\end{vmatrix} + A_Y A_\psi \begin{vmatrix}
0 \\
\dot{\psi} \\
0
\end{vmatrix} + A_\psi \begin{vmatrix}
0 \\
0 \\
\dot{\theta}
\end{vmatrix} + \begin{vmatrix}
\dot{\gamma}
\end{vmatrix},$$

(2.7)

где ω_{Xg}, ω_{Yg}, ω_{Zg} — проекции абсолютной угловой скорости географической системы координат на соответствующие оси.

Равенство (2.27) может быть переписано как

$$\begin{vmatrix}
\omega_X \\
\omega_Y \\
\omega_Z
\end{vmatrix} = C^T \begin{vmatrix}
\omega_{Xg} \\
\omega_{Yg} \\
\omega_{Zg}
\end{vmatrix} + \begin{vmatrix}
\dot{\gamma} + \dot{\psi}\sin\theta \\
\dot{\theta}\sin\gamma + \dot{\psi}\cos\gamma\cos\theta \\
-\dot{\psi}\sin\gamma\cos\theta + \dot{\theta}\cos\gamma
\end{vmatrix},$$

(2.8)

В выражении (2.8) первое слагаемое — это переносная угловая скорость
(вызвана вращением Земли и перемещением объекта вдоль ее поверхности), а второе – относительная угловая скорость. Компоненты переносной угловой скорости рассчитываются исходя из показаний блока акселерометров. Чтобы получить углы ориентации необходимо из показаний гироскопов исключить составляющие переносной угловой скорости. Если эти составляющие скомпенсированы, Тогда проекции относительной угловой скорости трехгранника $OXYZ$ относительно $OXgYgZg$ примут вид:

$$\begin{align*}
\omega^\text{отн}_x &= \dot{\gamma} + \dot{\psi}\sin\theta; \\
\omega^\text{отн}_y &= \dot{\theta}\sin\gamma + \dot{\psi}\cos\gamma\cos\theta; \\
\omega^\text{отн}_z &= -\dot{\psi}\sin\gamma\cos\theta + \dot{\theta}\cos\gamma.
\end{align*}$$

(2.9)

Выразив из системы уравнений переменные $\dot{\gamma}, \dot{\psi}$ и $\dot{\theta}$, получим

$$\begin{align*}
\dot{\psi} &= \frac{1}{\cos\theta}[\omega^\text{отн}_x\cos\gamma - \omega^\text{отн}_z\sin\gamma]; \\
\dot{\theta} &= \omega^\text{отн}_y\sin\gamma + \omega^\text{отн}_z\cos\gamma; \\
\dot{\gamma} &= \omega^\text{отн}_x - \tan\theta[\omega^\text{отн}_y\cos\gamma - \omega^\text{отн}_z\sin\gamma].
\end{align*}$$

(2.10)

Уравнения (2.10) называются кинематическими уравнениями в углах Эйлера-Крылова. Проинтегрировав систему дифференциальных уравнений (2.10) будут получены параметры ориентации ψ, θ, γ.

2.1.2 Определение линейных скоростей и перемещений объекта

Как говорилось выше, перемещение точки O представляет собой сложное движение. Тогда абсолютное ускорение точки будет сумма следующих составляющих

$$a = a^e + a^r + a^c,$$

(2.11)

где a^e – переносное ускорение, a^r – относительное ускорение, a^c – ускорение Кориолиса.

Ускорение Кориолиса или поворотное ускорение является мерой взаимного влияния переносного движения на относительное и наоборот. Определяется как удвоенное векторное произведение угловой скорости
вращения Земли на относительную скорость

\[
\mathbf{a}^c = 2 \mathbf{U} \times \mathbf{V}^r = 2 \begin{vmatrix}
i & j & k \\
U \cos \varphi & U \sin \varphi & 0 \\
V_{xg} & V_{yg} & V_{zg}
\end{vmatrix},
\]

где \(i, j, k\) – орты осей системы координат \(OX, Y, Z\).

Проекции кориолисова ускорения на оси ГСК примут вид

\[
a^c_{xg} = 2UV_z \sin \varphi; \quad a^c_{yg} = -2UV_z \cos \varphi; \quad a^c_{zg} = 2(V_y U \cos \varphi - UV_x \sin \varphi).
\]

Относительное ускорение \(\mathbf{a}^r\) связано с изменением относительной линейной скорости \(\mathbf{V}^r = V_{xg}i + V_{yg}j + V_{zg}k\) и перемещением объекта вдоль земной поверхности с относительной угловой скоростью \(\omega' = \dot{\lambda} \cos \varphi \hat{i} + \dot{\lambda} \sin \varphi \hat{j} - \dot{\varphi} \hat{k}\):

\[
\mathbf{a}^r = \mathbf{\dot{V}}^r + \omega' \times \mathbf{V}^r = \mathbf{\dot{V}}_r + \begin{vmatrix}
i & j & k \\
V_{zg} & V_z & 0 \\
R & R & R
\end{vmatrix}
\]

Проекции \(\mathbf{a}^r\) на оси ГСК можно записать в виде

\[
a^r_{xg} = \dot{V}_{xg} + \frac{V_{zg}^2}{R} \tan \varphi + \frac{V_{xg} V_{yg}}{R},
\]

\[
a^r_{yg} = \dot{V}_{yg} - \frac{V_{zg}^2}{R} - \frac{V_{xg}^2}{R},
\]

\[
a^r_{zg} = \dot{V}_{zg} + \frac{V_{zg} V_{yg}}{R} - \frac{V_{xg} V_{zg}}{R} \tan \varphi.
\]

Переносное ускорение \(\mathbf{a}^e\) связано угловой скоростью вращения Земли и определяется следующим образом

\[
\mathbf{a}^e = \mathbf{U} \times (\mathbf{U} \times \mathbf{R}).
\]

Проекции \(\mathbf{a}^e\) на оси ГСК имеют вид
\[a^e_{xg} = U^2 R \sin \phi \cos \phi, \]
\[a^e_{yg} = -U^2 \cos^2 \phi, \]
\[a^e_{zg} = 0. \]
(2.17)

Для получения компонент вектора ускорения силы тяжести (0, g, 0) производится сложение векторов переносного ускорения \(a^e \) и вектора г \(g \) ускорения гравитационного поля Земли.

Блок акселерометров измеряет кажущееся ускорение. Проекции вектора кажущегося ускорения на оси ГСК имеют вид

\[n_{xg} = \dot{V}_{xg} + \frac{V^2_{zg}}{R} \tan \phi + \frac{V_{xg} V_{yg}}{R} + 2UV_{zg} \sin \phi; \]
\[n_{yg} = \dot{V}_{yg} - \frac{V^2_{zg}}{R} - \frac{V^2_{yg}}{R} - 2UV_{zg} \cos \phi + g; \]
\[n_{zg} = \dot{V}_{yg} + \frac{V_{zg} V_{yg}}{R} + \frac{V_{xg} V_{zg}}{R} \tan \phi + 2(UV_{yg} \cos \phi - UV_{xg} \sin \phi). \]
(2.18)

Так как БИНС связана с подвижным объектом, то акселерометры будут измерять проекции кажущегося ускорения на оси ССК. Для нахождения проекций кажущегося ускорения на оси ГСК необходимо воспользоваться матрицей переход, которая формируется на основе данных от алгоритма ориентации.

Полезной информацией для определения широты и долготы является только ускорения относительного движения \(\dot{V}_{xg}, \dot{V}_{yg}, \dot{V}_{yg} \). Поэтому из показаний акселерометров исключаются составляющие, связанные с ускорением Кориолиса и ускорениями из-за движения объекта по земной поверхности. Сумма последних получило название «вредные ускорения» или компенсирующие составляющие ускорения, определяемые по формулам

\[a^k_{xg} = \frac{V^2_{zg}}{R} \tan \phi + \frac{V_{xg} V_{yg}}{R} + 2UV_{zg} \sin \phi; \]
\[a^k_{yg} = -\frac{V^2_{zg}}{R} - \frac{V^2_{yg}}{R} - 2UV_{zg} \cos \phi + g; \]
\[a^k_{zg} = \frac{V_{zg} V_{yg}}{R} + \frac{V_{xg} V_{zg}}{R} \tan \phi + 2(UV_{yg} \cos \phi - UV_{xg} \sin \phi). \]
(2.19)
Таким образом, получим

\begin{align*}
 n_{xg} - a_{xg}^k &= \dot{V}_{xg}; \\
 n_{yg} - a_{yg}^k &= \dot{V}_{yg}; \\
 n_{zg} - a_{zg}^k &= \dot{V}_{yg}. \\
\end{align*}

(2.20)

Для получения линейных скоростей последние выражения интегрируются при начальных условиях по скоростям $V_{xg}(t_0)$, $V_{yg}(t_0)$, $V_{zg}(t_0)$. Проекции линейной скорости примут вид

\begin{align*}
 V_{xg} &= V_{xg}(t_0) \int_{t_0}^{t} (n_{xg} - a_{xg}^k) dt = V_{xg}(t_0) + \int_{t_0}^{t} \dot{V}_{xg} dt; \\
 V_{yg} &= V_{yg}(t_0) \int_{t_0}^{t} (n_{yg} - a_{yg}^k) dt = V_{yg}(t_0) + \int_{t_0}^{t} \dot{V}_{yg} dt; \\
 V_{zg} &= V_{zg}(t_0) \int_{t_0}^{t} (n_{zg} - a_{zg}^k) dt = V_{zg}(t_0) + \int_{t_0}^{t} \dot{V}_{zg} dt. \\
\end{align*}

(2.21)

Для получения координат местоположения объекта (широты и долготы) интегрируются линейной скорости при начальных значениях координат и высоты $\varphi(t_0), \lambda(t_0), h(t_0)$:

\begin{align*}
 \varphi &= \varphi(t_0) + \int_{t_0}^{t} \frac{V_{xg}}{R} dt; \\
 \lambda &= \lambda(t_0) + \int_{t_0}^{t} \frac{V_{zg}}{R \cos \varphi} dt; \\
 h &= h(t_0) + \int_{t_0}^{t} V_{yg} dt. \\
\end{align*}

(2.22)
2.2 Схема алгоритма работы БИНС

Рисунок 2.8- Блок-схема работы алгоритма БИНС.

В работе стояла задача моделирования функционирования БИНС в автономном режиме, поэтому из описанного алгоритма (см. п. 2.1) исключались составляющие, связанные с вертикальным каналом. На рисунке 2.8 приведена схема горизонтальных каналов БИНС. Как отмечалось, блок акселерометров (БА) вырабатывает проекции вектора кажущегося ускорения n_x, n_y, n_z на оси ССК. Далее с помощью матрицы C производится пересчет n_x, n_y, n_z из ССК в ГСК (блок «Переход к ГСК»). Матрица C формируется по данным от ДУС согласно выражению. В результате образуются проекции кажущегося ускорения a_{Xg}, a_{Yg} и a_{Zg}.

В «Блоке выработки a_{Xg}^{k}, a_{Yg}^{k} и a_{Zg}^{k}» формируются компенсирующие ускорения, которые вычитаются из a_{Xg}, a_{Yg} и a_{Zg}. В результате будут
получены проекции ускорения относительного движения объекта $\dot{\vec{V}}_x$, $\dot{\vec{V}}_y$ и $\dot{\vec{V}}_z$.

Для определения координат местоположения объекта (широкоты и долготы) ускорения относительного движения поступают в «Блок выработки навигационной информации», где производится двукратное интегрирование о $\dot{\vec{V}}_x$, и $\dot{\vec{V}}_z$ при начальных условиях и согласно (2.17).

На основе соотношения (2.28) с учетом информации о λ, ϕ, широте φ и угловой скорости Земли U в «Блоке выработки $\omega_x, \omega_y, \omega_z$» формируются проекции вектора абсолютной угловой скорости географического трехгранника $\omega_x, \omega_y, \omega_z$. Затем полученные проекции с помощью матрицы A (2.25) перепроектируются из ГСК в ССК, то есть формируются компоненты переносной угловой скорости $\omega_{\text{пер}}^x, \omega_{\text{пер}}^y, \omega_{\text{пер}}^z$ (блок «Переход в ССК»). Затем эти составляющие поступают в часть схемы, отвечающей за алгоритм ориентации.

Из показаний датчиков угловой скорости (БГ – блок гироскопов) исключаются компоненты $\omega_{\text{пер}}^x, \omega_{\text{пер}}^y, \omega_{\text{пер}}^z$. Таким образом, будут получены относительные угловые скорости $\omega_{\text{отн}}^x, \omega_{\text{отн}}^y, \omega_{\text{отн}}^z$, из которых согласно (2.29) образуются ψ', θ' и γ'. Далее производится их интегрирование и на выход «Блока углов выработки ориентации» поступают данные о углах рыскания ψ, тангажа θ и крена γ.

Выводы по главе 2

В данной главе рассмотрен способ определения угловой ориентации объекта с использованием углов Эйлера-Крылова и получения линейных скоростей и перемещений объекта с учетом влияния на показания акселерометров кориолисова ускорения и ускорений, связанных с криволинейностью движения объекта по земной поверхности. Представлена структурная схема алгоритма работы БИНС.
ГЛАВА 3 МОДЕЛИРОВАНИЯ АЛГОРИТМА РАБОТЫ БИНС

3.1 Разработка модели в среде Matlab/Simulink

Моделирование служит для наблюдения, предсказания поведения объекта и выбора свойств объекта (критерия эффективности работы), оптимизации работы при задании тех или иных входных условий, воздействий. Применимо к БИНС можно выделить такие задачи моделирования как исследование математической модели БИНС в реальном времени и определение точности выработки параметров с учетом погрешностей ЧЭ, входящих в БИНС, и внешних возмущений. Следовательно, составление достоверной модели является ключевым моментом.

Для моделирования алгоритма БИНС была выбрана среда Matlab/Simulink. Эта программа позволяет применять различные подходы к моделированию, имеет расширенный набор функций, блоков и пакетов для аппроксимации, статистической обработки данных, решения дифференциальных уравнений, позволяет проводить дифференциальные и интегральные исчисления. Пакет Simulink расширяет возможности для моделирования, имитации поведения сложных систем и разработки новых систем и подсистем.

В соответствии со структурной схемой БИНС построен модель (Приложение 1) в среде Matlab/Simulink. При моделировании не рассматривался вертикальный канал, поэтому исключается блок выработки вертикальной скорости, и проекций высоты.

Блок интегрирования (рисунок 3.1) вырабатывает параметры ориентации. Расчет параметров происходит по информации о проекциях относительных угловых скоростей интегрированием уравнений (2.10).

Блок интегрирования, созданный с помощью блоков в Simulink,
приведен на рисунке 3.1. Для упрощения моделирования взамен схемы блоков интегрирования, использовался блок Matlab Function. Преимущество данного блока заключается в том, что с помощью Editor можно записать нужную функцию (рис. 3.3). При этом нужно задавать необходимое количество входов и выходов.

Рисунок 3.2— Интегратор созданный с помощью блоков в Matlab/Simulink.
Блок перехода в географическую систему координат (рис. 3.4). На блок поступает показания из блока акселерометров и блока интегрирования (рис. 3.5), пересчет данных осуществляется с помощью матрицы $С$. Матрица $C=AT$, матрица $А$ представлена во 2 главе (2.5). На выходе из блока будем получать вектора кажущегося ускорения в географической системе координат.
Рисунок 3.4— Переход к ГСК

Блоки для расчета компенсирующих компонент ускорения согласно выражению (2.19) приведен на рисунке 3.5 и угловой скорости по формуле (2.9) – рисунке 3.6. Это также блоки Matlab Function, в которых прописаны требуемые математические соотношения.

Рисунок 3.5 — Блок выработки компенсирующих ускорений.

Рисунок 3.6 — Блок выработки компенсирующих угловых скоростей.

Блок выработки параметров навигации и блок расчета радиуса Земли представлены на рисунке 3.7. Форма Земли рассматривалась в виде эллипсоида Красовского Ф.Н. Выражение для расчета радиуса Земли
представлено в гл. 2.

Рисунок 3.7 – Блок выработки углов навигации и радиуса Земли

3.2 Результаты моделирования

Рисунок 3.8 – Место расположения БИНС на ПВ.

Для проверки работы модели в качестве входных воздействий использовались показания акселерометров и гироскопов БИНС-2М-03, описание которой приведено в гл. 1. Данные измерителей были взяты при проезде участка железной дороги «Вырица-Коммунар». Система была установлена на кузове вагона, как показано на рисунке 3.8.

В результате моделирования БИНС с учетом начальных значений были получены следующие результаты. Далее производилось сравнение результатов модели с данными вычислителем БИНС. На рисунках синим цветом обозначим результаты моделирования, а красным – вычислителя.

40
Также рассчитывались абсолютные погрешности для каждого параметра. Отметим, что частота выдачи данных от вычислителя – 100 Hz, а измерители (акселерометры и гироскопы) записаны с частоты 400 Hz.

Максимальное расхождение сигналов составило не более 0,36”. На увеличенном фрагменте графика представлено максимальное отклонение
показаний модели от вычислителя.

Рисунок 3.8 – Угол тангажа.
Максимальное расхождение сигналов составило не более 0,72’’

Рисунок 3.9- Угол крена.
Погрешность моделирования составила 4,32''

Рисунок 3.10- Широта.
Максимальное расхождение сигналов составило не более 2,16''.
Рисунок 3.11- Долгота.
Максимальное расхождение сигналов составило не более 3,24”.

Рисунок 3.12 – Траектория движения объекта
На рисунке 3.12 приведена траектория движения ПВ (зависимость широты от долготы). В правой части рисунка синим цветом показана траектория, построенная по результатам работы модели, красным – вычислителя БИНС. В левой части показан отрезок железнодорожного пути «Вырица-Коммунар». Можно говорить о том, что построенная модель алгоритма БИНС при ее работе в автономном режиме является адекватной и выдает достоверные данные по параметрам навигации и ориентации.

Выводы по главе 3
В данной главе была разработана модель алгоритма БИНС в среде MATLAB/Simulink. Получены параметры ориентации (углы курса, тангажа и
кrena), навигации (долгота и широта), также представлена траектория движения объекта. Полученные погрешности (расхождение сигналов модели и вычислителя) составили 4,32’’ по параметрам ориентации и 3,24’’ по параметрам навигации.
ГЛАВА 4 ТРЕБОВАНИЯ ОХРАНЫ ТРУДА ПРИ РАБОТЕ С ПЕРСОНАЛЬНЫМИ ЭЛЕКТРОННО-ВЫЧИСЛІТЕЛЬНЫМИ МАШИНАМИ (КОМПЬЮТЕРАМИ)

“Требования безопасности, направленные на предотвращение неблагоприятного влияния на здоровье человека вредных факторов производственной среды и трудового процесса при работе с персональными электронно-вычислительными машинами. При работе с ПЭВМ (компьютерами) необходимо соблюдать следующие меры безопасности и охраны труда:

- эксплуатация ПЭВМ должна осуществляться в помещениях с естественным и искусственным освещением;
- оконные проемы должны быть оборудованы регулируемыми устройствами типа жалюзи, занавесей, внешних козырьков, позволяющих исключить пряную блискость, создаваемую солнечными лучами;
- площадь на одно рабочее место пользователей, работающих с видеодисплейными терминалами (мониторами) на базе электронно-лучевой трубки должна составлять не менее 6 квадратных метров, с мониторами на базе плоских дискретных экранов (жидкокристаллические, плазменные) – не менее 4,5 квадратных метров;
- светильники местного освещения должны иметь не просвечивающий отражатель с защитным углом не менее 40 градусов;
- расстояние от глаз до экрана видеодисплейного терминала должно находится в пределах 600-700 мм, но не ближе 500 мм;
- в помещении с ПЭВМ должна производиться ежедневная влажная уборка пола и мебели. Помещения с работающими ПЭВМ необходимо проветривать после каждого часа работы;
- женщины во время установления беременности переводятся на работу, не связанные с использованием ПЭВМ, или для них ограничивается
время работы с ПЭВМ (не более 3 часов за рабочую смену) при условии соблюдения гигиенических требований;

- продолжительность непрерывной работы с видеодисплейным терминалом без регламентированного перерыва не должна превышать 1 час;

- для предупреждения преждевременной утомляемости рекомендуется организовывать рабочую смену путём чередования работ с использованием ПЭВМ и без неё;

- при работе с текстовой информацией рекомендуется выбирать наиболее физиологический режим представления черных символов на белом фоне;

- если работник во время перерыва в работе с ПЭВМ вынужден находиться в непосредственной близости от него (менее 2 метров), то необходимо отключить питание монITORA.

В зависимости от категории трудовой деятельности и уровня нагрузки за рабочую смену при работе с ПЭВМ устанавливается суммарное время регламентированных перерывов, приведенное в следующей таблице:

Таблица 4. Суммарное время регламентированных перерывов.

<table>
<thead>
<tr>
<th>Категория работы с ПЭВМ</th>
<th>Уровень нагрузки за рабочую смену при видах работ с ПЭВМ</th>
<th>Суммарное время регламентированных перерывов при 8-часовой смене, мин.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>группа A, количество знаков</td>
<td>группа B, количество знаков</td>
</tr>
<tr>
<td>I</td>
<td>до 20 000</td>
<td>до 15 000</td>
</tr>
<tr>
<td>II</td>
<td>до 40 000</td>
<td>до 30 000</td>
</tr>
<tr>
<td>III</td>
<td>до 60 000</td>
<td>до 40 000</td>
</tr>
</tbody>
</table>
Примечание.

Виды трудовой деятельности с использованием ПЭВМ разделяются на 3 группы:
- группа А – работа по считыванию информации с экрана ВДТ с предварительным запросом;
- группа Б – работа по вводу информации;
- группа В – творческая работа в режиме диалога с ПЭВМ.

Для видов трудовой деятельности устанавливается 3 категории тяжести и напряженности работы с ПЭВМ, которые определяются:
- для группы А – по суммарному числу считываемых знаков за рабочую смену, но не более 60 000 знаков за смену;
- для группы Б – по суммарному числу считываемых или вводимых знаков за рабочую смену, но не более 40 000 знаков за смену;
- для группы В – по суммарному времени непосредственной работы с ПЭВМ за рабочую смену, но не более 6 часов за смену.”[22]

4.1 Мероприятия по безопасности перед началом работы

Перед началом работы с ПЭВМ нужно провести следующие мероприятия:
1. Подготовка рабочего места ;
2. Настройка освещения на рабочем месте;
3. Проверка правильности подключения оборудования к электросети;
4. Проверка исправность проводов питания и отсутствия оголенных участков проводов;
5. Проверка правильности установки стола, стула, угла наклона экрана компьютера, положение клавиатуры, положение «мыши», а так же всех остальных элементов находящихся на рабочем
месте которые могут привести к неудобным позам и напряжению тела.

4. Мероприятия безопасности во время работы

Во время работы запрещается:

1. Допускать попадание влаги на поверхность компьютера;
2. Производить самостоятельное вскрытие и ремонт компьютера;
3. Выдрагивать электровилку, держась за шнур.

Продолжительность непрерывной работы составляет 2 часа. Во время перерывов, для снятия зрительного напряжения, устранения утомления и снижения нервно – эмоционального напряжения проводится комплексы упражнений[23].

4.2 Мероприятия по окончании работы

1. Отключения питания компьютера;
2. Приведение в порядок рабочего места;
3. Выполнение упражнений для глаз и пальцев рук для расслабления[23].

4.3 Квалификационные требования предъявляемые к пользователям, ремонтникам

При эксплуатации офисного электрооборудования необходимо выполнять следующие требования:
- применяемое электрооборудование должно быть заводского изготовления и соответствовать требованиям государственных стандартов и технических условий (что подтверждается в документах завода-изготовителя);
- при эксплуатации и обслуживании электрооборудования необходимо соблюдать требования:
 - настоящей инструкции;
паспорта и руководства (инструкции) по эксплуатации электрооборудования, разработанных заводом-изготовителем электрооборудования (при их наличии);

Работники при эксплуатации электрооборудования могут производить простейшие операции по его обслуживанию:
- подключение и отключение разъемов ПЭВМ и оргтехники (принтеров, факсов, копировальных аппаратов);
- установку и удаление бумаги в печатающие и копирующие устройства (в предусмотренные лотки для бумаги);
- выемку, установку, замену картриджей в печатающих и копирующих устройствах;
- выемку застрявшей бумаги в печатающих и копирующих устройствах;
- удаление пыли и загрязнений.

Работы по ремонту электрооборудования должны выполняться специально обученным обслуживающим персоналом (в том числе представителями сторонних организаций);
- электрооборудование, имеющее контакты для подключения заземления, должно быть заземлено, а помещения, где размещаются рабочие места с ПЭВМ (компьютерами), должны быть оборудованы защитным заземлением (занулениею) в соответствии с техническими требованиями по эксплуатации оборудования;
- все крышки и защитные панели должны находиться на своих местах (при отсутствии крышки или защитной панели эксплуатация электрооборудования не допускается);
- при работе с электрооборудованием не допускать попадания влаги на поверхность электрооборудования, а также запрещается работать на электрооборудовании влажными руками;
- вентиляционные отверстия электрооборудования не должны быть перекрыты находящимися вплотную стенами, мебелью, посторонними предметами;
- выдергивание штепсельной вилки электроприбора необходимо осуществлять за корпус штепсельной вилки, при необходимости придерживая другой рукой корпус штепсельной розетки;
- подключение и отключение разъемов компьютеров и оргтехники должно производиться при отключенном питании (за исключением подключения и отключения USB-устройств);
- установка и удаление бумаги осуществляется в лотки (установленные места) печатающих и копирующих устройств;
- выемка, установка, замена картриджей в печатающих и копирующих устройствах, а также выемка застрявшей бумаги должны осуществляться при отключенном электрооборудовании;
- удаление пыли с электрооборудования должно производиться в отключенном от электрической цепи состоянии;
- перед использованием электроприборов необходимо проверить надёжность крепления электророзетки, свериться с номиналом используемого напряжения;
- в помещениях, в которых используется напряжение двух и более номиналов, на всех штепсельных розетках должны быть надписи с указанием номинального напряжения;
- корпуса штепсельных розеток и выключателей не должны содержать трещин, оплавлений и других дефектов, способных снизить защитные свойства или нарушить надёжность контакта;
- недопустимо использовать штепсельные разъёмы в случае существенного нагревания штепсельной розетки или вилки электроприбора при эксплуатации;
- кабели (шнуры) электропитания не должны содержать повреждений изоляции, сильных изгибов и скручиваний;
- незлектротехническому персоналу, выполняющему работы, при которых может возникнуть опасность поражения электрическим током, присваивается группа I по электробезопасности[24].

ЗАКЛЮЧЕНИЕ

В проведенной работе был проведен обзор параметров и средств контроля рельсового пути, рассмотрен вопрос актуальности своевременного контроля состояния железных дорог. Произведен обзор моделей и состав аппаратуры ПВ. Одной из основных систем, входящих в структуру ПВ, является БИНС, по измерительной информации которой определяются такие параметры, как: взаимное положение рельсовых нитей, уклон продольного профиля, кривизна пути в плане, отклонения от прямолинейного положения в плане прямых участков пути, горизонтальные и вертикальные ускорения кузова.

Также был смоделирован алгоритм работы БИНС в среде MATLAB/Simulink, рассмотрен способ определения угловой ориентации объекта с использованием углов Эйлера-Крылова и определения линейных скоростей и перемещений объекта. Были получены углы ориентации и навигации, произведен их сравнительный анализ., который показал, что созданная в среде MATLAB/Simulink модель алгоритма БИНС является достоверной.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

2. В.И. Гупалов, А.М. Боронахин. Инерциальные и информационные технологии определения параметров движения объектов и свойств рельсового пути. — Санкт-Петербург, ЛЭТИ, 2012 г.
5. Официальный интернет-сайт НПЦ Инфотранс. – http://www.infotranslogistic.ru
7. Официальный интернет сайт ЗАО "Промышленно-инновационная компания Прогресс" www.pikprogress.ru
8. Вагон-путеизмеритель ЦНИИ-4. Техническое описание. ЕИМН.663511.001Т0. — М., 1996.
11. Лукиянов Д.П., Мочалов А.В., Одинцов А.А., Вайсгант И.Б.
Инерциальные навигационные системы морских объектов. –
12. Лукиянов Д.П., Мочалов А.В., Филатов Ю.В. Лазерные инерциальные
13. Мартыненко Ю. Г. Тенденции развития современной гироскопии.
14. Лукиянов Д.П. Лазерные и волоконно – оптические гироскопы:
состояние и тенденции развития./ Гироскопия и навигация. – 1998. –
№4. – С. 20 – 46.
15. Лукиянов Д.П. Микромеханические акселерометры и микросенсоры
с.
16. Инструкция по текущему содержанию железнодорожного пути: ЦП-
17. Инструкция по расшифровке лент и оценке состояния рельсовой
колеи по показаниям путеизмерительного вагона ЦНИИ –2 и мерам
по обеспечению безопасности движения поездов: ЦП 515// МПС РФ. –
18. Полоса отчуждения и рельсовый путь // Энциклопедия «Кругосвет». –
http://krugosvet.ru/
19. Основы построения бесплатформенных инерциальных навигационных
систем: учебное пособие / В.В. Матвеев, В.Я. Распопов – СПб.: ГНЦ
РФ ОАО "Концерн "ЦНИИ Электроприбор",2009. – 278 с.
20. СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к
персональным электронно-вычислительным машинам и организации
работы»
21. СанПиН 2.2.2.1332-03 «Гигиенические требования к организации работы на копировально-множительной технике»

22. Правила устройства электрооборудования: Приказ Министерства энергетики РФ от 20.05.2003 г., № 187.

Приложение 1

Модель БИНС в среде MATLAB\Simulink